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DATA OR POINT COUNTS

J. ANDREW RoYLE'® AND JAMES D. NicHOLS?

1Division of Migratory Bird Management, U.S. Fish and Wildlife Service, 11510 American Holly Drive,
Laurel, Maryland 20708 USA

2U.S Geological Survey, Patuxent Wildlife Research Center, 11510 American Holly Drive, Laurel, Maryland 20708 USA

Abstract. We describe an approach for estimating occupancy rate or the proportion of
area occupied when heterogeneity in detection probability exists as a result of variation in
abundance of the organism under study. The key feature of such problems, which we exploit,
isthat variation in abundance induces variation in detection probability. Thus, heterogeneity
in abundance can be modeled as heterogeneity in detection probability. Moreover, this
linkage between heterogeneity in abundance and heterogeneity in detection probability
allows one to exploit a heterogeneous detection probability model to estimate the underlying
distribution of abundances. Therefore, our method allows estimation of abundance from
repeated observations of the presence or absence of animals without having to uniquely

mark individuals in the population.
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INTRODUCTION

Estimation of abundance for animal populations in-
volvestwo basic issues (e.g., see Thompson 1992, Lan-
cia et al. 1994, Skalski 1994, Thompson et al. 1998,
Yoccoz et al. 2001). First, the investigator is sometimes
interested in areas that are sufficiently large that ground
surveys cannot be conducted over the entire area of
interest. In such situations, investigators must select a
sample of locations to survey, and the selection must
be conducted in a manner that permits inference about
the entire area of interest, and thus about the locations
not sampled. Thisis astandard problem in spatial sam-
pling; statistical texts such as Cochran (1977) and
Thompson (1992) present sampling designs and asso-
ciated estimators to permit such inference. The second
problem in animal abundance estimation involves de-
tectability, or the idea that animal survey methods sel-
dom detect all animals present in any surveyed area or
sample unit. Instead, animal survey methods involve
collection of some sort of count statistic, and the in-
vestigator then must develop an estimator for the prob-
ability that an animal present in the area of interest
appears in the count statistic. This probability also can
be viewed as the expected proportion of the animals
present that is actually detected. The variety of methods
presented in texts (e.g., Seber 1982, Buckland et al.
2001, Williams et al. 2002) and reviews (Lancia et al.
1994) of animal abundance estimation provide different
methods of estimating detection probabilities for spe-
cific kinds of count statistics.
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Methods for estimating detection probabilities, and
thus abundance, on sample units can be expensive in
both time and effort. For example, capture-recapture
methods require repeated efforts to capture or observe
animals (Otis et al. 1978, Pollock et al. 1990). Even
observation-based methods such as distance sampling
(Buckland et al. 2001) and multiple observers (Cook
and Jacobson 1979, Nichols et al. 2000) are viewed by
some as too consumptive of time and effort.

One potential approach to reducing effort in large-
scale monitoring programs involves a shift of interest
from numbers of animals to numbers of sample units
occupied by animals. Methods implementing this gen-
eral approach are based on presence—absence (more
properly, detection—nondetection) data obtained on
sampling units. Such methods have been developed
independently several times (Geissler and Fuller 1987,
Azuma et a. 1990, Bayley and Peterson 2001,
MacKenzie et a. 2002, Nichols and Karanth 2002) and
appear to be useful for avariety of different monitoring
programs (e.g., patch occupancy by spotted owls in
western North America, area occupancy by tigers in
India, wetland occupancy by anurans throughout North
America). In addition to providing a reduced-effort ap-
proach to large-scale monitoring, surveys directed at
occupancy are very useful for metapopulation studies
(e.g., see Hanski and Gilpin 1997). The proportion of
patches occupied isviewed as astate variablein various
metapopul ation models (e.g., Levins 1969, 1970, Han-
ski 1992, 1994, 1997, Lande 1987, 1988). Many meta-
population studies also focus on so-called “‘incidence
functions” (e.g., see Diamond 1975, Hanski 1992) in
which the probability of occurrence of a speciesin a
patch is expressed as a function of patch characteristics
such as area and habitat.
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Estimation approaches developed for occupancy sur-
veys incorporate detection probability directly into the
estimation process (see MacKenzie et al. 2002) and
thus deal appropriately with this fundamental compo-
nent of animal abundance estimation. It is not neces-
sary to count the numbers of organisms observed on
sampl e units, and occupancy surveys arethusrelatively
easy and efficient to conduct. As with traditional cap-
ture-recapture studies, the possibility that heteroge-
neity exists in detection probability is an important
modeling consideration. One important source of het-
erogeneity, probably the most important source in
many situations, is variation in animal abundance, N,
among sites. Variable N induces heterogeneity in site-
specific detection probabilities. Thus, failure to accom-
modate heterogeneity in detection probability is a de
facto assumption of constant abundance among sites.

To illustrate this linkage between abundance and het-
erogeneous detection probabilities, suppose that the ith
sample unit is occupied by N, animals, that all animals
in a sample unit have identical detection probabilities,
and that detection of an individual animal in a sample
unit isindependent of detection of other animalsin that
unit. In this situation, the conditional (on N;) proba-
bility of detecting occupancy on a sample unit, say p;,
can be written as

p=1-@Q-n" 1

where r is a binomial sampling probability that a par-
ticular individual is detected. Detection probability at
the level of the sample unit p, is estimated via repeat
visits by investigators to the sample units (e.g.,
MacKenzie et al. 2002). That approach requires that a
group of sample units either have the same p, or else
have p; that vary in accordance with measurable co-
variates, and thereforeit isinappropriate when p, varies
as aresult of variation in N;.

This relationship suggests that if one is able to ad-
equately characterize the distribution of detection prob-
abilities, then the distribution of abundances can be
deduced from Eq. 1. Because one of the main perceived
limitations of occupancy surveys is their inability to
generate information about absolute abundance, such
a framework may greatly expand the utility of occu-
pancy surveys in many settings.

In this paper, we provide a method for: (1) dealing
with heterogeneity in detection probabilities caused by
variation in animal abundance, and (2) using this het-
erogeneity to extract information about abundance from
occupancy surveys. Our approach isto acknowledgethat
heterogeneity in N; induces heterogeneity in p; according
to Eg. 1. When properly specified to acknowledge this,
a mixture distribution for p; permits estimation of the
distribution of N,. From this estimated distribution, the
best estimate of N;, given the data at a particular site,
can be computed. The estimated distribution of abun-
dances across sites, {N;; i = 1, 2, ...}, is useful in
certain kinds of metapopulation modeling (see Discus-
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sion). In addition, these estimates of N, are useful for
estimating two important quantities. First, the estimates
can be summed over all sites to estimate overall abun-
dance on the sample units or average abundance per
sampled unit. Second, the estimated fraction of occupied
sites (N, > 0) estimates occupancy probability in aman-
ner that deals directly with the heterogeneity associated
with the variation in unit-specific abundances.

OCCUPANCY SURVEYS

Occupancy surveys entail repeat visits to R sample
unitsi = 1, 2, ..., R (we refer to these as ‘‘sites’).
At each visit, an effort is made to detect the species of
interest, producing a detection history of whether or
not the species was detected at each of the visits to the
site. The observed presence—absence at each visit is a
binary random variable defined as follows:

1
Wit = 0

We note that the key element of this problem is that
observed nondetection is ambiguous, in the sense that
there may be nondetection at sites that are, in fact,
occupied (sampling zeros) and nondetection as a result
of asite being unoccupied (fixed zeros). The important
estimation problem is the separation of these two types
of zeros by parameterizing a model that allows esti-
mation of both detection probability and occupancy
rate.

Thelikelihood of the datais constructed by acknowl-
edging that the site-specific detection frequencies, w;
= 3w, are a mixture of two processes. One process
istheusual binomial likelihood found in many capture—
recapture problems. This model is conditional on an-
imals being present at sitei (i.e., occupancy) and avail-
able for counting. Sampling zeros may result from this
binomial sampling model. We assume that each site
has probability ¢ of being occupied. Thus, the second
processisthat w;, has a point mass at 0 with probability
1 — . That is, if animals are not present, then Pr(w;
= 0) = 1. This component model generates the fixed
ZEros.

From these considerations, the marginal likelihood
of the data may be constructed. This may be found in
MacKenzie et al. (2002), for example. The simple
closed-population, constant-p version with T sample
periods is

Lw) = 111 (VI )pvw-(l - p)ww}

X {Wﬂo WA -pT+ 1= lb)]} @)

if detected at sitei in sample t
if not detected.

where w, isthe number of timesthat detection occurred
at site i, and p is the conditional (on occupancy) prob-
ability of detection, i.e., analogous to the usual cap-
ture-recapture detection probability parameter. It is a
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simple matter to numerically maximize this likelihood
in order to obtain estimates of p and .

This basic occupancy model is often referred to as
a zero-inflated binomial model (e.g., Hall 2000) in oth-
er applications. Zero-inflation models are commonly
used for modeling count data that contain excessive
zeros, including Poisson and negative binomial models.
Extension of this concept to any distributionis, in prin-
ciple, straightforward.

As specified here, data consist of detection or non-
detection. In practice, counts or some other ordinal
measures of abundance may be observed. Such data
can bereduced to abinary (presence—absence) response
and model 2 can be applied. Also, possibilities exist
for making direct use of data other than detection—
nondetection, such as counts, although methods for
handling more general problems must be developed.
We address this further in the Discussion.

The occupancy survey model as a finite mixture on p

The argument producing the likelihood in Eq. 2 is
that there are two classes of sites, those that are oc-
cupied and those that are not. Then, conditional on
occupancy, animals are detected with probability p.

An alternative way to develop this model is to as-
sume that each site has its own detection probability,
say p,, and that there are two possible values of p.
First, a constant, nonzero p, say p, = p,, which occurs
with probability ¥. Sampling from such asitewill yield
w; according to the usual binomia (T, p,) sampling
model. Second, define ** unoccupied’ sitesto have zero
capture probability, i.e., p, = 0, so that Pr(w, = 0) =
1, which occurs with probability 1 — . In this case,
w, is sampled from a binomial p = 0 distribution,
which, of course, always will yield w; = 0. This for-
mulation as a mixture of binomial random variables
with different values of p, and mixing proportion s, is
equivalent to the earlier construction as a mixture of a
binomial random variable conditional on occupancy,
and apoint mass at 0. That is, both yield the likelihood
of Eg. 2.

When viewed as a mixture on detection probability,
this type of problem is similar to the finite-mixture
models considered by Norris and Pollock (1996) for
modeling heterogeneity in capture probabilities among
animals in a traditional N estimation framework, with
the exception that the finite mixture in Norris and Pol-
lock (1996) is specified on the conditional capture
probabilities, which are assumed to be nonzero for all
animals in the population. Here, we have simply mar-
ginalized the likelihood over two capture probability
states, one of which is zero, with the implicit under-
standing that sites with p; = 0 are unoccupied sites,
i.e., that animals cannot be detected at those sites. That
is, the detection probability under this alternative de-
velopment is a marginal detection probability.
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MODELING HETEROGENEITY IN p WITH
FINITE MIXTURES

We suppose that the number of animals available for
detection, N;, varies among sites. As is customary in
other capture-recapture type problems, we assume that
the events during which individual animals at asite are
detected are independent of one another. Let y; be the
number of animals observed. Then, the probability of
detecting at least 1 animal, given that animals are pre-
sent, isequal to 1 minus the probability of not detecting
al N, animals at the site:

Pr(y; > O[N;) = 1 — Pr(y, = O[N))

Pi

1-@a-nn.

We see that variation in N, is manifest as heterogeneity
in capture probability. We note that, in many problems
where the focus is on the proportion of the area oc-
cupied, only theevent that y, > 0 (or y; = 0) isobserved
(see Discussion), but for the development of the model,
it is useful to think in terms of the site-specific count,
Yi-

Consequently, unless one believes that abundance is
constant among sites, it is important to accommodate
variation in capture probability among sites that is a
result of variation in N;. This relationship further sug-
gests that modeling heterogeneity in p; will allow char-
acterization of the distribution of N,, because distinct
values of p, result only from variation in N;.

In the following development, we suppose that de-
tection probability varies by sample location only ac-
cording to the number of animals available to be de-
tected, p, = 1 — (1 — r)™. One could impose additional
model structure on r, which we discuss shortly. We
emphasize here that p, is defined conditional on N,
which may be zero. Thisisin contrast to the traditional
development presented in Occupancy Surveys, where
detection probability is defined conditional on N, > 0.
We discuss this further in Conditional and uncondi-
tional detection probability. The particular case where
N; = O isimportant because in this case we have p, =
0. That is, if a site is unoccupied, then the probability
of detection at that site is O, which is the alternative
development of the occupancy model alluded to in Oc-
cupancy Surveys, based on a finite mixture on marginal
detection probability.

For sitei, let w; be the number of detections observed
in T repeated samples. Then, w; is a binomial random
variable with likelihood

T Wi — T-w;,
L(w.) (W) pr(1 — pi) -

I
It is difficult to obtain reasonable estimates of each p,
for realistic values of T. Moreover, it is even less clear
how to obtain an estimate of abundance from this like-
lihood. However, we can exploit the relation between
p, and abundance to make progress in this regard.
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We now suppose that abundanceisarandom variable
with some probability distribution, say Pr(N = k) =
f(N = k) = f,. Thus, the site-specific abundances, N;;
i=1,2,...,areviewed as realizations of the random
variable N having probability distribution f(N). Be-
cause the random variable N is discrete, the density of
site-specific detection probabilities, p;, has support on
thevaluesp,=1— (1 —r)fork=0,1,....Moreover,
because of the relationship between p, and N, {f,} is
also the density for p; i.e., Pr(p, = p) = fi.

If the particular values of N, were known, then one
could simply estimate r from the likelihood conditional
on N. However, site-specific abundances are unknown.
A standard trick in similar problems involving random
effects or nuisance parametersisto estimate parameters
of the marginal likelihood of w;, which isthe following
mixture:

Lw) = > (T)va (1= p)Tfi. ©)
k=0 \W;.

The goal is to estimate r, the animal-specific detection
probability relating the mass points, and their masses
f.. Without further assumptions, this infinite-dimen-
sional estimation problem cannot be solved. One rea-
sonable assumption is to impose a parametric form on
f. (we discuss specifics in the section Estimation of the
Mixing Distribution and Abundance). Although this
does not require limiting the number of support points,
one would likely do so for numerical analysis of the like-
lihood. In this case, with K support points, we have

K
Low) = > (T)pw @-pyfe @
k=0 \Wj,
This has the appearance of the finite-mixture model
proposed by Norris and Pollock (1996). In their state-
ment of the problem, K would be limited by the number
of sampling occasions because the number of param-
eters to be estimated increases with K. With a para-
metric form imposed on f,, thisis not necessary, except
in the numerical analysis of the likelihood.
For independent data from R sites, w = (w;, W,,
..., Wg) thelikelihood is the product of R versions of
Eq. 4:

Lw) = H{E (VI ) (- pk)Tw'-fk}. ©)

i=1 | k=0

The fact that the masses of the support pointsin this
finite mixture correspond to abundance classes is cru-
cial to being abl e to estimate abundance from presence—
absence data. Application of finite mixtures on detec-
tion probability to the problem of occupancy surveys
generates an estimated mixing distribution that is, by
construction, an estimate of the distribution of animal
abundance among sites. Estimation of this model will
be discussed shortly, including selection of the masses.

Relationship to model **M,”

This model is analogous to the finite-mixture distri-
butions used by, for example, Norris and Pollock
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(1996) and Pledger (2000) for the modeling of hetero-
geneity in animal-specific capture probabilities (so-
caled “Model M,’), in the sense that the model is of
heterogeneity in detection probability among sample
units. In traditional applications, sample ‘‘units’ are
individual animals (being captured and recaptured),
whereas in occupancy applications, ‘‘units'” are spatial
units wherein animals are repeatedly detected or not
detected. Some discussion of this issue also is given
in MacKenzie et al. (2002).

There are several important practical differences be-
tween the model described by Eq. 5 and traditional
applications of model M, that merit further discussion.
First, in the present problem, the discrete support of p;
is a direct consequence of the discrete support of the
random variable N. In traditional applications, the dis-
crete support of p; is merely a convenient modeling
decision. Second, the support points are known except
for the unknown parameter r, and are specified by the
expressionp, =1 - (1 —rnkfork=1,2,...,K, the
support of the distribution of N;,. The only unknowns
are the densities of the support points and the animal-
specific capture probability, r. In general problemsin-
volving heterogeneity, continuous mixtures may be
more appropriate, e.g., the beta mixture (Burnham and
Overton 1978, Dorazio and Royle 2002). However, dis-
crete mixtures are especially relevant for this particular
problem because of the nature of the heterogeneity, as
arising from variation in N (which is discrete). Third,
in traditional applications of finite mixtures, the finite
mixture is imposed on the conditional (on occurrence)
capture probability. In the present development, the
event that a site is not occupied is equivalent to that
site having p, = 0, as aresult of N; = 0. Thus, it is
sensible to think of a portion of the population with
zero capture probability, and to model this case as sim-
ply another support point for the mixing distribution
of the marginal detection probability p,. Then, the zero
point mass (Pr(p; = 0)) isthe occupancy rate parameter.

Alternative models for detection

Although the model has been presented assuming
that r is constant, this is no more necessary here than
it is in any other capture-recapture type of problem.
For example, if r varies according to certain site or
time-specific covariates, then the model could be ex-
tended to accommodate them. Natural candidates that
influence detection probability are weather or sampling
conditions, or simply time(i.e., r varies over the study).
We provide an example of thisin Application to Avian
Point Counts.

Observation of simple presence-absence does come
at some expense with regard to modeling structure on
r. Because recapture information is unavailable on in-
dividual animals, obviously one cannot accommodate
individual heterogeneity in detection probability. Of
course, thisisaconsideration in any study design; thus,
in problems in which individual heterogeneity is
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thought to be critical, one should conduct a capture—
recapture study with unique marking of individuals.
Even though individual animal heterogeneity may be
important in many problems, relevant data often are
not collected, which of course motivates the general
interest in occupancy-type problems. Regardless, het-
erogeneity among spatial units as a consequence of
variable abundance will generally be important unless
one believes that abundance is constant among sites,
which is biologically untenable in many situations, but
perhaps reasonable in others (see Discussion).

Conditional and unconditional detection probability

Because conventional thinking in capture—recapture
problemsis based on the notion of acapture probability
defined conditional on presence, or occupancy, it is
instructive to clarify the relationship between the un-
conditional capture probability that forms the basis of
thelikelihood given by Eg. 5 and the more conventional
definition.

We first consider the unconditional detection prob-
ability. This is the probability of detection, regardless
of whether or not asiteis occupied. Because occupancy
states are indexed by abundance, this average detection
probability may be expressed as the average over the
unoccupied (N = 0) and various occupied (N > 0) states
as

EzgoPr(y>0|N:k)Pr(N:k). (6)

We emphasize that p is the average probability of
detecting animals on any particular sample unit that
includes the p; = 0 possibility, which is **non-occur-
rence.” Inthissense, it differsfrom the detection prob-
ability parameters typically considered in animal abun-
dance estimation problems. However, this is sensible
in occupancy survey problems because of the duality
between afinite mixture on occupancy state and afinite
mixture on unconditional detection probability includ-
ing the O state (i.e., Occupancy Surveys).

To determine the relationship between p and the more
familiar conditional detection probability, notethat Eq.
6 is the same as

p = Pr(y > Q[N > 0)Pr(N > 0)
+ Pr(y > O|N = 0)Pr(N = 0)
where, of course, the second term is 0. Here, Pr(y >
O|N > 0) is the conditional (on occupancy) detection
probability, which we will denote as p,. Also, Pr(N >

0) isthe occupancy rate, analogousto s in Eq. 2. There-
fore,

P = p
and hence,
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P =

< o)

or, using Eg. 6,
Pr(N = k)
—lb .

This is analogous to the usual detection probability
parameter (e.g., that of MacKenzie et al. [2002]), in
the sense that it is conditional on animals being present
and availablefor detection. The difference between this
expression and the traditional conditional detection
probability is, of course, that p,isamixture of different
detection probabilities that depend on N.

Similarly, one can compute the variance (or standard
deviation) of the p/s either conditional on N, > 0 or
not. In the simulation studies discussed in the section
Smulation Study, we report the conditional standard
deviation, say o, as a measure of the induced hetero-
geneity in p, resulting from variation in abundance. As
with p,, o. will depend on the abundance distribution.
This parameter may be interpreted in the same manner
as that found in traditional situations involving Model
M, (e.g., Burnham and Overton 1978, Pollock and Nor-
ris 1996, Dorazio and Royle 2002). For example, larger
values of o, imply more heterogeneous p;'s, in which
case the ‘‘constant p”’ models will perform relatively
poorly.

ﬁc=§lpr(y>0|N=k) )

EsSTIMATION OF THE MIXING DISTRIBUTION
AND ABUNDANCE

Estimation of the mixing distribution may proceed
in two ways. First, we may adopt the nonparametric
approach laid out in Norris and Pollock (1996) and
Pledger (2000). The number of nonzero support points
that may be considered in this situation is limited by
T, so where the range of N; is large, the nonparametric
approach will lead to a coarse approximation to the
true underlying distribution.

The second approach, and the one that we prefer, is
to consider parametric forms for the masses f,. Perhaps
the most natural candidate for f is the Poisson density,
N; ~ Poisson (\), so that

e\

fi = K (8)

where \ is the Poisson intensity parameter to be esti-
mated. This expression may be substituted into Eq. 5,
along with p, = 1 — (1 — r)% yielding a model with
only two parameters, A and r.

The Poisson model is a natural assumption for mod-
eling abundance for two reasons. First, suppose that N;
were observable without error, and interest was in con-
structing statistical models that explain variation in the
N's. The most obvious modeling approach for such data
is a Poisson generalized linear model (GLM) with a
log-linear model explaining variation in the mean of
N. This is classical Poisson regression, analogous to
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linear regression for normal data. In the present con-
text, the Poisson regression model functions as a prior
distribution for the unobservable abundances. Seber
(1982) provides other instances in which the Poisson
assumption is useful. Second, the Poisson model for
abundance arises under a random distribution of ani-
mals in space, and hence it is popular in many eco-
logical studies involving the distribution of plants and
animals.

Many other models for abundance are possible. A
second model that we consider here is the negative
binomial model (e.g., Lawless 1987) given by

Pr(N = K)
CTkk+a)/ Wap \ 1 2 9
k@) \1+ (Wap) \1+ (Va)u ©

where a and . are the parameters, and the mean and
variance under this model are

E[N] = n

and
p?
=n+ —.
Var[N] = p a

The negative binomial model can be viewed as a mix-
ture of Poisson distributions with means that vary ac-
cording to a gamma distribution. This may be an ap-
pealing model in some instances because it allows the
density of animals to vary spatially. Thus, the negative
binomial model can allow for more variation in abun-
dance than can be described by aconstant mean Poisson
model (extra-Poisson variation in N, or overdisper-
sion).

The benefit of using a parametric density for abun-
danceis a great reduction in the number of parameters
to be estimated (i.e., to one parameter describing the
support points and one describing their masses) com-
pared with the nonparametric finite-mixture models of
Norris and Pollock (1996), wherein the number of pa-
rameters increases with the number of support points
defining the mixture. Additionally, with a parametric
mixing distribution, the support of N need not be ar-
tificially restricted so as to ensure identifiability of
model parameters.

Estimation by maximum likelihood proceeds as de-
scribed in Pledger (2000), except for f, being con-
strained according to Egs. 8 or 9, and with support
points specified by p, = 1 — (1 — r)k Thus, the two
parameters to be estimated are the animal-specific de-
tection probability, r, and \, the mean of this Poisson
distribution on N. Using these estimates, we may es-
timate {f,, f;, . . ., fi}, the set of probabilities Pr(N =
k), and the corresponding support points, p,.

Estimating occupancy

Under a parametric model such as the Poisson, § =
1 — f, is aderived parameter (i.e., implied by \), and

J. ANDREW ROYLE AND JAMES D. NICHOLS

Ecology, Vol. 84, No. 3

so an estimator of {» under the Poisson model, for ex-
ample, is1 — Pr(N = 0; \):

p=1-¢.

Estimating abundance

We may compute Pr(N; = kjw, ) given the total number
of detections at each site, w;, using Bayes theorem:

Pr(w, [N; = K)Pr(N; = k)

Pr(N; = klw) = %
>, Pr(w [N = KPr(N; = K)

(10

Note that Pr(w; |N; = k) are simply binomial probabil-
ities, and f, = Pr(N, = k), for which we may use the
estimates, f,.

The posterior masses from Eqg. 10 may be computed
for each value of k. One could use as an estimate of
N; that value of k that produces the highest posterior
probability (i.e., the posterior mode). Alternatively, we
prefer using the posterior mean:

E[N;[w;] = }K: kX Pr(N; = k|w;)

which will not usually be an integer. Other character-
istics of the posterior of N, (e.g., the variance, percen-
tiles, etc. ...) may be computed using the posterior
probabilities in Eqg. 10.

In many problems, one would expect abundance to
be small at a local scale; consequently, estimates for
N/’s will be very poor. However, this framework may
produce very good estimates of the total or average
number of individuals present at the collection of sites
sampled. Of course, \ is an estimate of the average,
and, where R sites are sampled, R\ is an estimate of
the total abundance on the R sample units. When sam-
pling units are inherently discrete, such as wetland ba-
sins in amphibian surveys, or in waterfowl breeding
pair counts or brood counts, then the total abundance
in a region of interest may be estimated directly by
area expansion. Otherwise, when the effective area of
a sampling unit is known, then an estimate of total
abundance may be obtained by a simple area expansion.

APPLICATION TO AVIAN PoINT COUNTS

Avian point counts are widely used to investigate
problems in avian biology and ecology. Because it is
sometimes difficult to determine the number of unique
individual s observed, the use of presence—absence data
for the analysis of occupancy and other questions is
appealing. Here, we demonstrate the application of our
method for estimating abundance from simple pres-
ence—absence data based on avian point counts. The
datawere collected on aNorth American Breeding Bird
Survey (BBS) route in New Hampshire in 1991. The
datawere collected at 50 points (** stops’”) over aperiod
of 30 days during the BBS sampling interval. The 50
points were sampled 11 times each by the same ob-
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server. For general background on the BBS, see Rob-
bins et al. (1986). For further description of the data
used here, see Link et al. (1994). We consider five
species for analysis: Hermit Thrush (Catharus gutta-
tus), Wood Thrush (Hylocichla mustelina), Gray Cat-
bird (Dumetella carolinensis), Ovenbird (Seiurus au-
rocapillus), and American Redstart (Setophaga ruti-
cilla).

We make use of the Poisson assumption on abun-
dance at the stop-level, as described in the previous
section. We believe that the assumption that N; is con-
stant over the time period in question is reasonable, on
the grounds that birds have established breeding ter-
ritories at that time. No stop-specific covariates are
available to allow for the modeling of variation in stop-
level abundance. In general, such information could be
modeled in the Poisson mean, as in traditional gener-
alized linear models. An important aspect of these data
is that breeding activity may vary over the period in
question, which suggests that the detection probability
may vary over the course of the study as a result of
variation in nesting or calling activity. Because of this,
we considered several alternative models for detection
probability, based on a logistic model for detection
probability according to

logit(rg,) = Bo + B.day + B.day®

Here, the variable ‘“day’’ indexes the day on which the
sample was conducted from the beginning of the study.
The three models considered were those submodels
containing only B, (Model 1 [M1], constant detection
probability), B, and B, (Model 2 [M2], linear change
in detection probability) and all three parameters (M od-
el 3[M3]), allowing for quadratic change in detection.
For example, quadratic change might involve an in-
crease in detectability followed by a decrease, or vice
versa

In addition to these models allowing for temporal
variation in detection probability and variation in abun-
dance among stops, we considered the simple occu-
pancy model described by MacKenzie et al. (2002).
Because this model implies the assumption of constant
abundance across stops, we believe that it will fre-
quently be untenable, although it may provide a rea-
sonable approximation in some situations. However,
because it is the only rigorous competitor that is ca-
pable of yielding biologically relevant information
(i.e., patch occupancy) from sample data, we believe
that many investigators would consider its use for some
problems. We will label this model **Model 0 (MO).

We used AIC (Akaike 1973, Burnham and Anderson
1998) to compare the various models. Because the sam-
ple size in the present problem is the number of spatial
samples (i.e., there are R = 50 w,’s in Eq. 5), we used
the small-sample adjustment AIC, (e.g., Burnham and
Anderson 1998:221). In general, models with lower
AIC, scores are considered to be better candidate mod-
els than those with higher scores. In some analyses,

(1)
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one could make an argument for the use of an AIC
statistic that adjusts for overdispersion. Instead, we
choose to defer this issue of possible overdispersion to
the next section (negative binomial). Our approach then
deals explicitly with overdispersion by attempting to
model it, rather than adjusting for it, and hence we do
not consider other refinements to AIC beyond the
small-sample correction.

For the various models fit to each species, we com-
puted the MLEs of N (for Models 1-3, as it is not
available for Model 0), the various detection proba-
bility parameters, and the occupancy rate. In addition,
for Models 1-3 the conditional detection probability,
p., Was computed according to the discussion of section
Conditional and unconditional detection probability,
asthisisthe quantity comparable to the detection prob-
ability of MacKenzie et al. (2002). Because Models 2
and 3 contain a nonconstant detection probability, the
value at the mean sample day was used (i.e., evaluating
(11) at day = day). The results for the five species are
shown in Table 1. For each species, model results are
ordered by AIC, value, from best to worst, and AIC,
differences (A,) and Akaike weights (w,,), where mis
the model index (Burnham and Anderson 1998:122—
124) are given to facilitate interpretation.

We see from Table 1 that one or more of the models
that allow for variation in abundance (Models 1-3) are
preferred to Model 0 in all cases. The Akaike weights
for Model 0 are near zero in all cases except for the
Gray Catbird, which isthe only instance in which Mod-
el 0 beats any of the variable abundance models. For
the Gray Catbird, w, = 0.158, which is still only one-
fourth that of Model 1, for which w, = 0.572. In gen-
eral, one might use the Akaike weights to carry-out
““model-averaging’’ in order to obtain estimates of crit-
ical parameters averaged across the model set (Burn-
ham and Anderson 1998), but in the case of Model 0,
no abundance estimate is obtained. Moreover, even for
occupancy, justification for averaging Model 0O results
(which assumes constant abundance) with other models
is unclear. Mean abundance estimates (A) are given in
Table 1. To better gauge the uncertainty associated with
these estimates, we computed 95% profile likelihood
intervals for N of each species using the model with
the best AIC,. Profile likelihood intervals are probably
more suitable for this problem because of the low sam-
ple sizes where conventional asymptotic (Wald-type)
intervals will tend to understate the confidence interval
width. The 95% profile intervals for the five species
are: Hermit Thrush (0.332, 2.098), Wood Thrush
(1.624, 3.036), Gray Catbird (0.332, 0.941), Ovenbird
(1.612, 2.779), and American Redstart (1.381, 3.869).

Generally, the conditional detection probability es-
timates (i.e., p,) are fairly similar across the various
models, the main discrepancy being associated with
Model 0 (as expected). Consequently, the estimates of
occupancy for Model O depart from those estimates
based on the variable abundance models, although the
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TABLE 1.
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Results fitting Poisson abundance model to 50 spatial point counts of five bird species repeated 11 times. Model

results for each species are ranked by AIC, (w; = Akaike weight), best to worst.

Model A ¥ Bo By B2 r Pe AIC, A Wi
Hermit Thrush
M2 0.664 0.485 —2.545 —0.057 0.073 0.097 193.58 0 0.440
M1 0.678 0.492 —2.593 0.070 0.094 193.84 0.25 0.387
M3 0.652 0.479 —2.585 —-0.058 0.0008 0.070 0.093 195.92 2.34 0.137
MO 0.417 0.109 198.59 5.00 0.036
Wood Thrush
M1 2.208 0.890 -1.211 0.230 0.447 634.21 0 0.608
M2 2.221 0.891 —1.209 —0.004 0.223 0.448 636.39 2.19 0.204
M3 2.099 0.877 -0.972 0.008 —0.0023 0.275 0.499 636.55 2.34 0.188
MO 0.902 0.415 708.76 74.56 0.000
Gray Catbird
M1 0.546 0.421 —-1.520 0.179 0.222 298.38 0 0.572
M2 0.539 0.417 -1.528 0.009 0.178 0.220 300.44 2.07 0.204
MO 0.403 0.230 300.96 2.58 0.158
M3 0.536 0.415 —1.457 0.014 —0.0009 0.189 0.232 302.68 4.30 0.067
Ovenbird
M1 2.238 0.893 -0.777 0.315 0.566 588.29 0 0.534
M2 2.265 0.896 —0.759 -0.014 0.319 0.574 589.13 0.85 0.350
M3 2.248 0.894 —-0.709 -0.011 —0.0005 0.330 0.585 591.34 3.05 0.116
MO 0.860 0.533 698.41 110.12 0.000
American Redstart
M1 2.169 0.886 —-1.933 0.126 0.271 580.09 0 0.671
M2 2.196 0.888 —1.959 0.005 0.124 0.267 582.23 2.15 0.229
M3 2.138 0.882 —2.052 —0.004 0.0016 0.114 0.245 583.92 3.83 0.099
MO 0.842 0.283 592.90 12.81 0.001

Note: For a description of the models and symbols, see sections Modeling Heterogeneity in p with Finite Mixtures and

Application to Avian Point Counts.

difference is not always large (e.g., for the Wood
Thrush, the difference is on the order of 2-3%). The
difference is most pronounced for the Hermit Thrush
and American Redstart.

There is evidence of temporal variation in detection
probability for the Hermit Thrush, in which case the
linear change model (M2) is slightly preferred to the
constant model (M1), but the Akaike weights are sim-
ilar. The direction of temporal change (decrease in de-
tection probability over time) is consistent with the
expected reduction in detection probability as the
breeding season progresses. Estimates of abundance
(the Poisson mean) do not appear to be sensitive to the
choice of model for detection probability.

Animportant benefit of Models 1-3 isthat they allow
for estimation of abundance, and these estimates appear
reasonable, as do the estimates of animal-specific de-
tection probabilities (i.e., r) , based on our informal
assessment and knowledge of bird biology and sam-
pling. In particular, the Ovenbird is typically easy to
detect because of its distinctive call, and its estimated
detection probability is f = 0.315 (for Model 1), the
highest among the five species. Similarly, our informal
assessment is that the Ovenbird, Gray Catbird, and
Wood Thrush are all easier to detect than both the
American Redstart and Hermit Thrush, thelatter having
very low estimated detection probabilities. In general,
detection probabilities will depend on the specific ob-

server and other sampling protocol issues (which are
controlled for in this study by use of the same observer
and the same protocol in each sample); thus, detection
probabilities for other surveys may very well differ
from those obtained here.

Negative binomial results

We investigated the negative binomial model on
abundance for these data. In all cases, maximum like-
lihood estimation appeared unstable, indicated by high
correlation between the parameter estimates (typically
between 7, the detection probability, and [, the negative
binomial mean) and flat likelihood surfaces. For ex-
ampl e the correlation between . and  for the American
Redstart was —0.998 and similar negative values be-
tween these two parameter estimates were found for
the remaining four species. We attempted to compute
95% profile likelihood intervals for p (the parameter
of interest), and these intervals typically had an upper
bound of « (i.e., no finite value of w could be found
toyield alog-likelihood difference of 3.84). Thesingle
exception was for the Wood Thrush data, for which the
95% profile likelihood on p. was (5.79, 102.81). This
highlights the main problem that we found in attempt-
ing to interpret the negative binomial results: the es-
timates, in most cases, were simply not sensible. For
example, for the Wood Thrush, . = 29.7 would suggest
that the average point count is observing 29.7 Wood
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Thrushes, which is certainly beyond the realm of pos-
sibility for point counts of most breeding song birds.
The lone exception for which sensible negative bino-
mial estimates were obtained was the Gray Catbird, for
which i = 0.69 (compared to A = 0.56 under the
Poisson model). Even in this instance, the likelihood
was extremely flat, yielding no finite upper bound on
the profile likelihood.

Because of this apparent instability, we omit addi-
tional detail on the negative binomial results for these
species, and we are cautious about considering this
model as a viable candidate model for explaining de-
tection—nondetection data from this BBS field experi-
ment until this suspect behavior is better understood
(see Discussion).

SIMULATION STUDY

Although the previous example offers some indi-
cation that the Poisson model provides sensible an-
swers for real data, it remains to establish suitable fre-
quentist properties of the estimators, i.e., their average
behavior over alarge number of data sets. As with any
likelihood-based technique, we expect performance to
deteriorate in small samples. We conducted a simula-
tion study to evaluate estimation of the critical param-
eters in these occupancy problems under the Poisson
model for abundance, and to assess what constitutes
““small”’ sample sizes over a range of conditions. We
also carried out a more limited simulation study to
evaluate the performance of the MLE when the data-
generating model is negative binomial.

See Appendix A for additional information on the
simulation design. Results are given in Appendix B.
We provide a summary of the salient points from that
study here.

Discussion of simulation results

Poisson data-generating model.—Bias of A is gen-
erally small over the range of situations considered in
the simulations. Naturally, the largest bias occurs for
low values of animal-specific capture probability (e.g.,
r = 0.1) and when fewer sites are sampled. In such
cases, the bias is typically ~10-15%. This is not sur-
prising, because when \ is small, the expected number
of sites at which detection occurs also is small.

For this reason, it is difficult to extend simulation
studies to smaller sample situations because, for ex-
ample, with R = 100 sites, and over a broad range
values of r and \, one does not expect to collect much
data. As an illustration, suppose that abundance does
behave as a Poisson random variable with A\ = 0.5.
Then, occupancy rate is slightly less than 40%. We
expect to see animals at fewer than 40 sites, depending
onrand T.If r = 0.1 and T = 5, the expected number
of sites at which animals are detected at all is only
about 18 or 19. Expectations must be moderated in such
situations, and one probably would not design a study
with T = 5 and R = 100 if similar values of A\ and r
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were suspected. We emphasize that likelihood-based
inference is not a small-sample procedure, and this
should be considered in any study. Thus, although it
is tempting to consider R in the context of traditional
capture-recapture, this is misleading because R = 100
does not generate 100 capture histories of animals de-
tected at least once, but instead includes sites with all-
zero capture histories.

Nevertheless, A can perform very well for R = 100
or even less, under the right circumstances. For ex-
ample, larger values of r and T provide more favorable
conditions for estimating \. Simulation results not pre-
sented here indicated that T = 10 may yield practical
estimates for small values of r. Similarly, if r islarger,
say =0.3, performance of the MLE of \ is adequate
even for T = 5.

As afinal comment on estimation of \, we note that
the distribution of X is slightly skewed over the range
of situations considered. Thus, although the bias of A
is apparent in the mean of the sampling distribution,
the median is frequently very close to the truth over
all situations considered, which may be some conso-
lation for the observed small-sample bias.

Estimation of y.—In traditional capture-recapture
problems for which estimation of abundance is the ob-
jective, failure to account for heterogeneity causes a
negative bias in the estimator of N (e.g., see Seber
1982, Pollock et al. 1990). Thus, in occupancy surveys,
we expect that failure to model heterogeneity will lead
to negative bias in the occupancy rate estimator. We
see this behavior clearly in the results given in Ap-
pendix B, where, regardless of the situation, the mean
of {s under the constant-p model described by Mac-
Kenzie et al. (2002) exhibits a negative bias. Con-
versely, there is almost no discernible bias in the es-
timator of s under the data-generating Poisson hetero-
geneity model when R = 500, and only slight bias in
most cases when R = 200. As before, there is some
skew in the distribution of . Also consistent with the
results for £, the performance of {y deteriorates some-
what as N decreases, because this generally leads to
fewer detection histories upon which to base inference.

Negative binomial data-generating model.—The
sampling distribution of L under the negative binomial
model is highly skewed. Consequently, the estimator
of w is considerably biased in the small-sample situ-
ation considered. We note that additional simulation
results (not reported) indicate that this bias diminishes
rapidly as either R or T is increased. To elucidate the
results, we report medians (Table 3 of Appendix B) for
summaries of estimators under the negative binomial
data-generating model. In general, the sampling dis-
tributions of p. and {s are centered approximately on
the truth, with (interestingly) slightly more discrepancy
in the low-heterogeneity cases. As expected, when the
Poisson model isfit to negative binomial data, we gen-
erally observe larger (negative) bias in the estimators
of both the mean and occupancy rate, although the bias



786

is minimal for the low-heterogeneity case, but quite
substantial when there is extreme heterogeneity. The
sampling distribution of A is nearly normal, so the
means are similar to the medians reported in Table 3
of Appendix B. Note that, although the bias in the
estimation of the mean abundance may be substantial,
occupancy rate estimates are less affected. Finally, the
estimator of  using the constant-p model of Mac-
Kenzie et al. (2002) exhibits more bias than under the
misspecified Poisson model, as expected.

CONCLUSIONS AND DiscussioN

In this paper, we have developed a method for ac-
counting for heterogeneous detection probabilities in
replicated presence—absence data (i.e., ‘‘occupancy
surveys'’) where the heterogeneity arises as a result of
variation in abundance among sites. Although hetero-
geneity could be accounted for indirectly, in traditional
methods, by inclusion of covariates in a model for p,
it is not always possible to observe covariates that are
correlated with abundance. The benefit of our approach
isthat it is based on the direct linkage between p, and
local abundance, N;, which is a consequence of bino-
mial sampling (i.e., Eq. 1). One important benefit of
exploiting this linkage is that our approach allows for
the estimation of the distribution of site-specific abun-
dances, and even site-specific abundance. Thisis made
possible by recognizing that variation in N induces het-
erogeneity in detection probabilities among sites.
Therefore, the probability distribution of abundance
can be deduced from the latent detection probability
distribution.

As suggested in the Introduction, we believe that
occupancy surveys have the potential to be useful in
various kinds of ecological investigations. Because of
the reduced effort typically associated with the collec-
tion of presence—absence data, we believe that occu-
pancy surveys may prove very useful in large-scale
surveys of various organisms. For example, some am-
phibian surveys involve repeat visits by investigators
to wetlands, with sampling carried out at each visit in
an attempt to ascertain presence of one or more species
of interest. Such sampling should be much less inten-
sive than the multiple-observer (Cook and Jacobson
1979) or capture-recapture (Wood et al. 1998) sam-
pling usually required to obtain reasonable abundance
estimates. Avian point counts can be used to draw in-
ferences about abundance when distances to detected
birds are recorded (Buckland et al. 2001), when mul-
tiple observers conduct the counts (Nicholset al. 2000),
or when the timing of detections is recorded (Farns-
worth et al. 2002). However, for standard point counts
that do not include collection of such ancillary data,
when distance measurements are imprecise, or when
there is ambiguity in the number of unique birds seen,
inference about abundance is not really possible with-
out very restrictive assumptions about stationarity of
detection probabilities (e.g., see Nichols et al. 2000,
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Anderson 2001, Rosenstock et al. 2002). However, re-
peat point counts at sample locations with associated
records of presence—absence could be used with oc-
cupancy models in order to provide reasonable infer-
ences about the proportion of the area occupied by
species. In these examples of avian and amphibian sur-
veys, presence—absence will be ascertained by visual
or auditory detection of animals. In the case of some
secretive species of mammals, it may be reasonable to
conduct occupancy surveys using automated remote
detections (e.g., camera-trapping) or detections of an-
imal sign (scats, tracks). For example, sign-based sur-
veys of tiger occupancy of sample units will be much
less expensive in time and effort than methods of abun-
dance estimation based on detections of marked ani-
mals (Karanth and Nichols 2002). The approach de-
scribed in this paper uses the data from occupancy
surveys to draw inferences not only about proportional
occupancy of sample units, but also about abundance
in some situations.

We believe that such occupancy surveys also will be
useful in metapopulation studies involving multiple
visits to many different sites among which animal
movement is hypothesized. As noted in the Introduc-
tion, the proportion of patches occupied is the state
variable of interest in many metapopulation models
(e.g., Levins 1969, 1970, Lande 1987, 1988, Hanski
1992, 1994, 1997). In association with metapopulation
studies, substantial effort has been directed at param-
eterizing so-called ‘“‘incidence functions” (Diamond
1975, Hanski 1992) characterizing the probability of
occurrence as a function of patch characteristics. The
methods presented here provide a means of properly
estimating occupancy probabilities and associated
functional relationships when there is heterogeneity of
detection probabilities associated with variation in
abundances over patches or sampling units.

In addition to reasonable estimation of occupancy
rates, the information on the distribution of abundances
over sampling units may be very useful in metapop-
ulation studies as well. Metapopulation models range
from very simple to fairly complex. Under the simplest
models (e.g., Levins 1969, 1970), all patches are as-
sumed to be equal with respect to the parameters gov-
erning patch occupancy dynamics, local colonization,
and extinction probabilities. Perhaps the most detailed
metapopulation models involve the use of structured
multisite matrix models that model the abundance of
each age or stage class at each location as functions of
class- and location-specific vital rates and rates of
movement (e.g., see Rogers 1966, Le Bras 1971,
Schoen 1988, Lebreton 1996, Lebreton et al. 2000).
Models of intermediate complexity and detail include
those of Gyllenberg and Hanski (1992) and Gyllenberg
et al. (1997), in which the abundance or population
size of each patch is a state variable of interest. This
is a very reasonable state variable, because extinction
probability depends very strongly on abundance (e.g.,
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Bailey 1964, MacArthur and Wilson 1967, Goel and
Richter-Dyn 1974, Gilpin and Soulé 1986, Boyce
1992), and dispersal and vital rates are frequently mod-
eled as functions of abundance (density dependence)
as well. The distribution of abundance over patchesis
one of the summary statistics used to characterize meta-
population systems under the models of Gyllenberg and
Hanski (1992) and Gyllenberg et al. (1997), which in-
deed predict an equilibrium abundance distribution.
The methods presented in this paper provide a means
of estimating this distribution and thus yield oppor-
tunities to test model predictions.

Itisoften the casethat little additional information
beyond simple presence—absence is available. In
such cases, reduction of data to presence—absence
may be appropriate or may entail little loss of in-
formation. For example, even when counts of or-
ganisms are made (such as in avian point counts), it
may not be possible to determine the number of
unique individuals that were observed due to move-
ment of individuals or imprecise locational infor-
mation. A second example, mentioned previously, is
that of anuran surveys, in which it is often very dif-
ficult to generate a useful ordinal measure of abun-
dance beyond simple presence or absence. Thirdly,
in carnivore scent station surveys, it is not always
possible to determine the number of unique individ-
uals that have visited a particular scent station. Fi-
nally, in the monitoring of rare organisms, or those
that are difficult to detect, the detection of multiple
organisms may seldom occur. Consequently, evenin
problems where additional information may be avail-
able in the form of counts or similar statistics, it is
often not clear how such information can be brought
to bear in arigorous manner toward assessing ques-
tions having to do with occupancy. Thisis not to say
that we recommend collecting only presence—ab-
sence data where it is possible to collect other types
of information. In fact, we strongly discourage such
methods, as techniques may evolve that allow for
such information to be used. However, at this time
no general methods exist for dealing with every type
of data that biologists might collect regarding abun-
dance. Our method provides abundance estimates
from presence—absence data that may be collected
directly or obtained by reduction of other informa-
tion to presence—absence data.

Alternative latent abundance models.—In our de-
velopment and analyses, we have considered models
for the latent distribution of p; based on parametric
forms implied by Poisson and negative binomial dis-
tributions on abundance. Thus, the latent p; distribution
has support on the integers 1 — (1 — r)s k=0, 1, 2,
..., with probabilities f, proportional to the Poisson
(or negative binomial) density. The benefit of this ap-
proach is that there are only two (or three) parameters
to be estimated, and the number of parameters does not
increase with the number of support points considered,
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in contrast to the ““nonparametric’” approach of Norris
and Pollock (1996). In addition, the parametric ap-
proach seemsto be the most logical modeling approach
for this problem because the distribution structure of
p, is entirely a consequence of that on site-specific
abundance. Nevertheless, one could adopt a nonpara-
metric approach, choosing to estimate both the support
points and their masses with no imposed ‘‘ ultrastruc-
tural” relationships, consistent with the approach of
Norris and Pollock (1996). However, in doing so, the
number of support points that can be considered is
severely limited by the number of sampling occasions.
Such nonparametric estimation can lead to bias in the
parameter estimates, and hence abundance estimation,
depending on the coarseness of the finite approximation
to the true distribution of N. Nevertheless, this ap-
proach may be preferred when assumption of para-
metric forms is not desirable. It is not clear, however,
whether or not sufficiently complex nonparametric fi-
nite mixtures may be estimated from simple presence—
absence data.

We have given only brief consideration to the neg-
ative binomial model for N, which allows overdisper-
sion relative to the Poisson assumption. Simulation re-
sults are encouraging, and suggest that the model pa-
rameters may be reasonably well estimated. However,
our attempts to fit this model to avian point-count data
were not satisfactory, resulting in flat likelihoods, high-
ly correlated parameter estimates, and estimates that
are at odds with our understanding of the problem. In
short, the negative binomial parameters appear to be
poorly identified by the BBS data considered. This is
not necessarily an indictment of the negative binomial
model, and may simply be due to small sample size
estimation under that complex model, or additional pa-
thologies in the data not considered here.

Where possible, we feel that extra-Poisson variation
in site-specific abundance is best modeled with the aid
of sensible explanatory covariates. The modeling
framework presented here extends trivially to this sit-
uation, simply by specification of the log-linear model
on site-specific means, \;:

P
log(\;) = 121 XijBj-

For amphibian or waterfow! surveys on wetland basins,
an important covariate might be the area of the wetland
being sampled. With sufficient additional information
(%'s), we think that most substantial overdispersion due
to variation in abundance can be accounted for explic-
itly in this manner. One reviewer also suggested the
use of quasi-likelihood to model overdispersion in
abundance, which may be a viable approach. Addi-
tional analysis of the negative binomial and other ap-
proaches to modeling variation in detection due to var-
iable abundance require further study.

Our main reason for focusing on the Poisson model
is its motivation as arising under a random distri-
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bution of individuals in space. Clearly, the negative
binomial is an important generalization of this, al-
lowing for (spatial) variation in mean abundance.
Although the negative binomial is appealing for this
reason, we question whether overdispersed models
(relative to the Poisson assumption) are sensible in
many contexts. For example, breeding birds, because
they are territorial, are probably more likely to be
distributed in space in a manner that suggests under-
dispersion relative to the Poisson model. Research
in this regard is also needed.

Design considerations.—Successful application of
our approach depends critically on the ability to char-
acterize the variability in detection probabilities. There
are many factorsthat affect thisability. One of the more
important factors in this regard is the number of sam-
pling sites. As with traditional applications of complex
capture-recapture models allowing for heterogeneity
among individuals, good performance of the estimators
requireslarge sample sizes(i.e., many observed capture
histories). This is often neglected in applications of
capture-recapture methods because one cannot design
a study to observe a desired number of individuals.

Our simulation studies indicate little bias in the es-
timators of both mean abundance and occupancy rate
under arange of conditions. We feel that our simulation
studies encompass a broad range of practical sampling
scenarios for monitoring programs and large-scalefield
investigations. We did not extensively investigate
small-sample extremes because estimator performance
under these situationsis highly variable. In short, when
heterogeneity exists as a result of variation in abun-
dance, several hundred sample sites may be necessary
to provide reasonabl e estimates of mean abundance and
occupancy rate, although it may be possible to realize
success with many fewer. Precise guidance is very sen-
sitive to context. In general, because the essence of any
occupancy study is a binomial sampling model (oc-
cupied or not), sample sizes should be considered with-
in this context.

The number of sampling occasions is also an im-
portant consideration. For the range of situationsthat
we considered, T = 5 may be adequate for many
intents and purposes, but larger T can be advanta-
geous when it is practical to achieve while still sat-
isfying the closure assumption. Although abundance
is not usually a controllable factor (unlike T and R),
the mean site-specific abundance has important con-
sequences for the performance of maximum likeli-
hood estimators. If N is large, on average, then an-
imals will be detected almost all of the time and no
variability among the p,’s will be observed (unless r
is very small). Thus, there will be little ability to
characterize the distribution of abundances. Al-
though this leads to an ‘‘apparent constant-p’’ situ-
ation for which the MacKenzie et al. (2002) method
would be well suited, it also would suggest very high
occupancy rates under the Poisson model. In such
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cases, one might consider alternative mixing distri-
butions on abundance that allow more flexibility in
occupancy rate, perhaps nonparametric finite mix-
tures. Alternatively, in problems where the size of
the sample unit size can be controlled to some extent,
this may allow some flexibility in the control of mean
abundance. That is, mean abundance s scal e specific,
and the choice of sample unit determines the scale
at which model parameters are defined. Conversely,
very low ‘‘mean abundance’ yields either N = 1 or
N = 0, and this case is essentially that considered
by MacKenzie et al. (2002). These considerations
lead to the recommendation to evaluate different de-
signs using simulations tailored to anticipated sam-
pling conditions.

Extensions.—The proposed method applies to re-
peated point counts that may be reduced to detection—
nondetection data. In general, however, there is some
loss of information in reduction to binary data. For
example, if one observesy;, = 2, then it is known that
N, must be =2. This can be accounted for by gener-
alizing the observation model to a product binomial
likelihood. When mean abundance is low, which will
tend to happen whenever the sampling unit is small in
relation to animal density, we suspect that there will
be little difference between the two approaches. Other
types of sampling schemes, including common anuran
monitoring programs, give rise to multinomial cate-
gories of abundance (e.g., none, few, many). The pos-
sibility exists for extracting abundance information
from these data also, but the form of the likelihood (as
it relates to abundance) is less clear in this instance.
We are currently investigating these extensions in the
context of several monitoring programsinvolving point
counts of birds and waterfowl.
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APPENDIX A
A description of the simulation design is available in ESA’s Electronic Data Archive: Ecological Archives E084-015-A1.

APPENDIX B
Tables presenting simulation results are available in ESA’s Electronic Data Archive: Ecological Archives E084-015-A2.



